The Technical Field "学習" had 1,940 patent application filings in the most recent period (2023-01-01 to 2023-04-30). This is a significantly decreased of -735 filings (-27.5%) over 2,675 they had in the same period of the previous year (2022-01-01 to 2022-04-30). This report also includes technical terms related to " ラーニング ", " 学び " in the search set.
The highest number of filings in 2021 with 8,022 cases, and their lowest number in 2015 with 1,793 cases.
The mean of the number of filings over the last 5 years (2019 to 2024, 35,257 cases in total) is 5,876, and the median is 7,625. The coefficient of variation (standard deviation/mean) is 0.5, and there have been big fluctuations in the number of filings from year to year.
Index | Value |
---|---|
Average | 5,876 patents |
Std Dev | 2,891 |
COV | 0.5 |
Year | Cases | YOY |
---|---|---|
2023 year | 3,518 cases | -52.3 % |
2022 year | 7,377 cases | -8.04 % |
2021 year | 8,022 cases | +0.30 % |
This report provides the latest patent analysis information (the IP landscape, including a patent map) on the patent search results of the JP patent database for 学習 for the period of the last 10 years (2015-01-01 to 2024-12-31). You can compare the information in this report with the trends in your competitors’ patent filings and technologies, and use it to search for important patents.
This service provides, free of charge, a patent analysis report based on the latest patent data (Japanese, U.S., European, and PCT application publications) for use in patent searches, patent analysis, and IP landscaping. The service is offered by "Patent Integration" a firm specializing in patent search/patent analysis.
This report includes basic information to help you understand the IP strategy and management of 学習, such as changes in the number of patents/patent applications they have filed, comparisons of the numbers of patents/patent applications filed by their peers and competitors, their top coapplicants (joint research partners, alliance partners), and their most important patents. It can be used in various intellectual property business operations such as IP landscaping, patent search/patent analysis, preparation of intellectual property business evaluation reports, selection of M&A candidates, and selection of alliance partners.
He is a patent attorney at a patent office. He specializes in invention counseling, patent filing, and intellectual property strategies for start-up companies and new businesses in the fields of software, information technology and artificial intelligence. He runs a patent course for beginners on Udemy, an online course provider.
After studying physics at the University of Tokyo as a doctoral student, he was engaged in intellectual property analysis and technology trend research as an in-house patent attorney at a precision equipment manufacturer and at Toyota Central R&D Labs. Inc..
The concept of the "IP landscape" (IPL) has been attracting attention recently.
An IP landscape is not limited to patent information, but also integrates and analyzes business information (e.g., non-patent information such as papers, news releases, stock information, and market information). Intellectual-property-based business management is realized through the analysis of intellectual property information applied to the formulation of management strategies and business strategies. This is a comprehensive approach that includes but not limited to planning of open and closed strategies, selecting M&A candidates, searching for alliance partners, and formulating intellectual property strategies, through the exploitation of intellectual property information.
IP landscaping usually includes patent search and patent analysis. In patent search and patent analysis, it is important to grasp the market position of each company and the overall technological trends and development trends for each technology. More specifically, it is important to understand what intellectual property your own company and other companies hold, what the strengths and weaknesses of other companies are, and how other companies are trying to exploit their intellectual property. In other words, it is important to understand both the business strategy and the intellectual property strategy of each company.
After reading this search report, you may be interested in more detailed patent searches and patent analysis. We offer a service called Patent Integration, which is an integrated patent search and patent analysis service. With reasonable pricing and a simple user interface such that even beginners can quickly search for and analyze patent information by company or technology from a web browser, please consider using it for detailed patent searches, patent analysis, and IP landscaping.
Patent Integration has a patent-landscaping function that can visually represent a set of tens of thousands of patents/patent applications. This allows you to convincingly show the technical positions of your company and its competitors to your management and business strategists in order to formulate management strategies and business strategies.
The changes in the number of patent filings of 学習 over the last 20 years (JP) are shown below.
The change in the number of patents/patent applications is the most basic index in patent analysis. By examining the change in the number of patents/patent applications, you can see the status of technological development and R&D focus for each company or technology. It should be noted that since there is a one and a half year lag between the filing and the laying open of patent applications, it is not possible to analyze the situation more recently than one and half years prior to the present.
In this report, you can only see the change in the number of patents/patent applications by company or technology, whereas Patent Integration allows you to quickly compare the number of patent applications with your competitors in each technical field by cross-referencing with other keywords and patent classifications.
This patent analysis report was created for a patent search set of 48,718 cases retrieved by applying the following search formula and analysis period to the following patent database. Patent information such as a patent analysis result, a patent map, and a patent landscape can be freely used for patent searches, analysis, and work on intellectual property strategies, including IP landscaping.
The number of patents and changes in the number of patents of other companies (competitors) in the same industry as 学習 are shown below.
Comparison of changes in the number of patents with peers and competitors is an important analytical index for understanding the intellectual property strategies of each company. By checking the transition of the number of patents for each company / competitor, you can check the status of focus on technology development and R&D for each company / technology.
It should be noted that patents have a time lag of one and a half years from filing to publication, so it is not possible to analyze the situation more recent than one and a half years.
If you want to find out more information, " Patent Integration , You can compare the number of patent applications with competitors in each technical field in a short time by multiplying with other keywords and patent classifications.Please use it for more detailed patent information analysis such as selection of M&A candidate destinations and alliance destinations.
Comparing the number of applications of each company, トヨタ自動車株式会社 has the highest number of joint applications in the last in the last 3 years (2023 to 2025) with 162 cases, followed by 三菱電機株式会社 with 118 cases.
Name | Cases |
---|---|
トヨタ自動車株式会社 | 162 cases |
三菱電機株式会社 | 118 cases |
キヤノン株式会社 | 110 cases |
株式会社日立製作所 | 99 cases |
富士通株式会社 | 81 cases |
株式会社東芝 | 61 cases |
日本電気株式会社 | 52 cases |
株式会社デンソー | 22 cases |
日本電信電話株式会社 | 19 cases |
ソニーグループ株式会社 | 10 cases |
Comparing the number of applications of each company, キヤノン株式会社 has the highest number of joint applications in the last for the target period (2015 to 2025) with 1,564 cases, followed by トヨタ自動車株式会社 with 1,544 cases.
Name | Cases |
---|---|
キヤノン株式会社 | 1,564 cases |
トヨタ自動車株式会社 | 1,544 cases |
三菱電機株式会社 | 1,478 cases |
日本電信電話株式会社 | 1,459 cases |
日本電気株式会社 | 1,317 cases |
富士通株式会社 | 1,268 cases |
株式会社日立製作所 | 1,262 cases |
株式会社東芝 | 768 cases |
ソニーグループ株式会社 | 483 cases |
株式会社デンソー | 419 cases |
パナソニックホールディングス株式会社 | 29 cases |
Below is a patent map showing changes in the number of applications for JP patents of 11 companies in the same industry over the past 20 years.
The number of patents and changes in the number of patents of other companies (competitors) in the same industry as 学習 are shown below.
Comparison of changes in the number of patents with peers and competitors is an important analytical index for understanding the intellectual property strategies of each company. By checking the transition of the number of patents for each company / competitor, you can check the status of focus on technology development and R&D for each company / technology.
It should be noted that patents have a time lag of one and a half years from filing to publication, so it is not possible to analyze the situation more recent than one and a half years.
If you want to find out more information, " Patent Integration , You can compare the number of patent applications with competitors in each technical field in a short time by multiplying with other keywords and patent classifications.Please use it for more detailed patent information analysis such as selection of M&A candidate destinations and alliance destinations.
Among the top coapplicants, トヨタ自動車株式会社 has the highest number of joint applications in the last in the last 3 years (2023 to 2025) with 162 cases, followed by 三菱電機株式会社 with 118 cases.
Name | Cases |
---|---|
トヨタ自動車株式会社 | 162 cases |
三菱電機株式会社 | 118 cases |
キヤノン株式会社 | 110 cases |
株式会社日立製作所 | 99 cases |
富士通株式会社 | 81 cases |
日本電気株式会社 | 52 cases |
日本電信電話株式会社 | 19 cases |
Among the top coapplicants, キヤノン株式会社 has the highest number of joint applications in the last for the target period (2015 to 2025) with 1,564 cases, followed by トヨタ自動車株式会社 with 1,544 cases.
Name | Cases |
---|---|
キヤノン株式会社 | 1,564 cases |
トヨタ自動車株式会社 | 1,544 cases |
三菱電機株式会社 | 1,478 cases |
日本電信電話株式会社 | 1,459 cases |
日本電気株式会社 | 1,317 cases |
富士通株式会社 | 1,268 cases |
株式会社日立製作所 | 1,262 cases |
Below is a ranking of the number of JP patent applications by 学習’s top 7 coapplicants over the last 20 years.
Below is a patent map showing the changes in the numbers of JP patent filings by 学習’s top 7 coapplicants over the last 20 years.
学習 filed 1,544 joint applications with トヨタ自動車株式会社 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 1,127 cases in total) is 188, and the median is 223. The coefficient of variation (standard deviation/mean) is 0.5, and there have been big fluctuations in the number of filings from year to year.
The number of filings has been decreasing for the last 3 years (2021 to 2024). The highest number of filings in 2022 with 283 cases, and their lowest number in 2015 with 81 cases.
Index | Value |
---|---|
Average | 188 patents |
Std Dev | 90.4 |
COV | 0.5 |
Year | Cases | YOY |
---|---|---|
2023 year | 159 cases | -43.8 % |
2022 year | 283 cases | +32.9 % |
2021 year | 213 cases | -9.75 % |
学習 filed 1,459 joint applications with 日本電信電話株式会社 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 777 cases in total) is 130, and the median is 108. The coefficient of variation (standard deviation/mean) is 0.9, and there have been relatively large fluctuations in the number of filings from year to year.
The highest number of filings in 2019 with 278 cases, and their lowest number in 2023 with 19 cases.
Index | Value |
---|---|
Average | 130 patents |
Std Dev | 115 |
COV | 0.9 |
Year | Cases | YOY |
---|---|---|
2023 year | 19 cases | -53.7 % |
2022 year | 41 cases | -76.6 % |
2021 year | 175 cases | -33.7 % |
学習 filed 1,262 joint applications with 株式会社日立製作所 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 898 cases in total) is 150, and the median is 195. The coefficient of variation (standard deviation/mean) is 0.5, and there have been big fluctuations in the number of filings from year to year.
The highest number of filings in 2021 with 209 cases, and their lowest number in 2015 with 40 cases.
Index | Value |
---|---|
Average | 150 patents |
Std Dev | 75.7 |
COV | 0.5 |
Year | Cases | YOY |
---|---|---|
2023 year | 95 cases | -51.0 % |
2022 year | 194 cases | -7.18 % |
2021 year | 209 cases | +4.50 % |
学習 filed 1,478 joint applications with 三菱電機株式会社 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 1,158 cases in total) is 193, and the median is 233. The coefficient of variation (standard deviation/mean) is 0.5, and there have been big fluctuations in the number of filings from year to year.
The highest number of filings in 2020 with 296 cases, and their lowest number in 2015 with 47 cases.
Index | Value |
---|---|
Average | 193 patents |
Std Dev | 103 |
COV | 0.5 |
Year | Cases | YOY |
---|---|---|
2023 year | 104 cases | -61.2 % |
2022 year | 268 cases | -3.60 % |
2021 year | 278 cases | -6.08 % |
学習 filed 1,317 joint applications with 日本電気株式会社 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 850 cases in total) is 142, and the median is 136. The coefficient of variation (standard deviation/mean) is 0.7, and there have been relatively large fluctuations in the number of filings from year to year.
The number of filings has been decreasing for the last 3 years (2021 to 2024). The highest number of filings in 2020 with 287 cases, and their lowest number in 2023 with 52 cases.
Index | Value |
---|---|
Average | 142 patents |
Std Dev | 99.1 |
COV | 0.7 |
Year | Cases | YOY |
---|---|---|
2023 year | 52 cases | -63.9 % |
2022 year | 144 cases | +12.50 % |
2021 year | 128 cases | -55.4 % |
The following shows JP patents held by 学習 that have had an invalidation trial against them demanded or an opposition filed against them by a third party, and 学習’s JP patents/patent applications of high importance cited by Examiners in patent examination processes.
By noting the most important patents, you can obtain knowledge of the competitive business environment in which 学習 is placed (e.g., whether it is a fiercely competitive environment or an oligopolistic market and the like). In general, it can be understood that a company with a large number of demands for invalidation trials is developing their business in a business environment where IP disputes are common.
If you want to search for more detailed information, you can use Patent Integration to retrieve and download by company cited patents/patent applications or patents undergoing invalidation trials. You can quickly extract important patents from a patent set that includes multiple competitors by cross-referencing with other keywords and patent classifications. Please consider using it for searches for important patents/patent applications.
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 3 patents Invalidation Trial from third parties. The average number of Invalidation Trial is 1.0 times. The most recently Invalidation Trial patent is 特許7208603 "サービス提供システム及び端末" (Invalidation Trial day 2024-08-05) , next is 特許6556767 "DPP−4阻害剤(リナグリプチン)を任意で他の抗糖尿病薬と組み合わせて含む抗糖尿病薬" (Invalidation Trial day 2024-03-19) .
- | No. | Title | Invalidation Trial days |
---|---|---|---|
1 | 特許7208603 | サービス提供システム及び端末 | 2024-08-05 |
2 | 特許6556767 | DPP−4阻害剤(リナグリプチン)を任意で他の抗糖尿病薬と組み合わせて含む抗糖尿病薬 | 2024-03-19 |
3 | 特許6934143 | 自動車の損傷度を査定する方法 | 2023-10-06 |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 2 patents/patent applications were invalidation trial more than once in the examination process of other patent applications. The mean of the number of invalidation trial is 1.0. The most invalidation trial patent is 特許6934143 "自動車の損傷度を査定する方法" (1 times) , and the next most invalidation trial patent is 特許6556767 "DPP−4阻害剤(リナグリプチン)を任意で他の抗糖尿病薬と組み合わせて含む抗糖尿病薬" (1 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許6934143 | 自動車の損傷度を査定する方法 | 1 times |
2 | 特許6556767 | DPP−4阻害剤(リナグリプチン)を任意で他の抗糖尿病薬と組み合わせて含む抗糖尿病薬 | 1 times |
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 70 patents Opposition from third parties. The average number of Opposition is 1.0 times. The most recently Opposition patent is 特許7472034 "ショベル、ショベル支援システム" (Opposition day 2024-10-18) , next is 特許7475848 "細胞解析方法、細胞解析装置、細胞解析システム、及び細胞解析プログラム、並びに訓練された人工知能アルゴリズムの生成方法、生成装置、及び生成プログラム" (Opposition day 2024-10-15) .
- | No. | Title | Opposition days |
---|---|---|---|
1 | 特許7472034 | ショベル、ショベル支援システム | 2024-10-18 |
2 | 特許7475848 | 細胞解析方法、細胞解析装置、細胞解析システム、及び細胞解析プログラム、並びに訓練された人工知能アルゴリズムの生成方法、生成装置、及び生成プログラム | 2024-10-15 |
3 | 特許7450309 | AI管路劣化予測システム、AI管路劣化予測方法及びAI管路劣化予測プログラム | 2024-09-09 |
4 | 特許7444489 | 学習支援システム及びサービス提供方法 | 2024-09-03 |
5 | 特許7440220 | 板金加工見積作成支援装置及び板金加工見積作成支援方法 | 2024-06-27 |
6 | 特許7404196 | 故障診断装置、故障診断システム、及び故障診断プログラム | 2024-06-25 |
7 | 特許7404197 | 故障診断装置、故障診断システム、及び故障診断プログラム | 2024-06-25 |
8 | 特許7398983 | 情報処理装置、情報処理方法及び情報処理プログラム | 2024-06-11 |
9 | 特許7393313 | 欠陥分類装置、欠陥分類方法及びプログラム | 2024-06-04 |
10 | 特許7390581 | 情報処理装置、情報処理方法、および情報処理プログラム | 2024-05-31 |
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 122 patents Protest from third parties. The average number of Protest is 1.2 times. The most recently Protest patent is 特開2022-020559 "画像処理装置、画像処理方法、および、プログラム" (Protest day 2024-12-24) , next is 特開2024-101538 "疵種類判定装置、疵種類判定方法、及び鋼材の製造方法" (Protest day 2024-12-24) .
- | No. | Title | Protest days |
---|---|---|---|
1 | 特開2022-020559 | 画像処理装置、画像処理方法、および、プログラム | 2024-12-24 |
2 | 特開2024-101538 | 疵種類判定装置、疵種類判定方法、及び鋼材の製造方法 | 2024-12-24 |
3 | 特開2023-001804 | 自動車ボディ及び/又は自動車部品の塗膜の塗膜品質の予測方法及び予測システム、塗装条件の予測方法及び予測システム、自動車ボディ及び/又は自動車部品の複層塗膜形成方法 | 2024-12-02 |
4 | 特開2023-073127 | 画像認識装置および画像認識方法 | 2024-12-02 |
5 | 特開2024-052561 | 溶接構造物用厚鋼板及びその製造方法、溶接部欠陥発生予測モデルの生成方法、並びに溶接構造物 | 2024-11-20 |
6 | 特開2023-077058 | 外観検査装置及び外観検査方法 | 2024-11-18 |
7 | 特開2024-037736 | 推測装置、推測システム、推測プログラム及び推測方法 | 2024-11-12 |
8 | 特開2022-012974 | 廃棄物処理システム及び廃棄物処理方法 | 2024-11-12 |
9 | 特許7611578 | 路面判定装置、及び、路面判定方法 | 2024-11-07 |
10 | 特開2023-068364 | 放射能評価装置 | 2024-11-05 |
11 | 特開2023-110924 | 情報処理装置、情報処理プログラム、および情報処理方法 | 2024-10-30 |
12 | 特開2023-128432 | 診断装置、および診断装置の制御方法 | 2024-09-02 |
13 | 特開2024-056067 | 情報処理装置、情報処理方法、制御装置、構造物、学習済みモデルの生成方法、及びプログラム | 2024-08-26 |
14 | 特開2023-013058 | 機械学習装置、生産計画策定装置、及び、推論装置 | 2024-08-09 |
15 | 特開2022-073649 | 判定装置、判定方法、プログラム及び回収装置 | 2024-07-30 |
16 | 特開2024-038396 | 画像解析方法、画像解析装置、およびプログラム | 2024-07-16 |
17 | 特開2023-050535 | 印刷機の故障診断システムおよび方法、プログラム、印刷管理装置、リモートモニタリングシステム | 2024-06-06 |
18 | 特開2023-009313 | 風速風圧推定装置及び風速風圧推定方法 | 2024-06-03 |
19 | 特許7564637 | 情報処理システム、情報処理方法、及び制御プログラム | 2024-05-15 |
20 | 特開2022-084328 | 電力需要予測システム及び電力需要予測方法 | 2024-04-26 |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 180 patents/patent applications were protest more than once in the examination process of other patent applications. The mean of the number of protest is 1.3. The most protest patent is 特許7611578 "路面判定装置、及び、路面判定方法" (7 times) , and the next most protest patent is 特表2019-528113 "機械学習モデルを使用した眼底画像の処理" (5 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許7611578 | 路面判定装置、及び、路面判定方法 | 7 times |
2 | 特表2019-528113 | 機械学習モデルを使用した眼底画像の処理 | 5 times |
3 | 特許6734475 | 画像処理装置及びプログラム | 4 times |
4 | 特許6940215 | 検査装置及び検査装置の識別手段の学習方法 | 4 times |
5 | 特開2023-110924 | 情報処理装置、情報処理プログラム、および情報処理方法 | 3 times |
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 259 patents Inspection from third parties. The average number of Inspection is 1.3 times. The most recently Inspection patent is 特開2022-054915 "機械学習実行プログラム、オブジェクト認識プログラム、機械学習実行装置及びオブジェクト認識装置" (Inspection day 2024-12-16) , next is 特開2023-125536 "判定装置、異常検知システム、判定方法及びプログラム" (Inspection day 2024-12-16) .
- | No. | Title | Inspection days |
---|---|---|---|
1 | 特開2022-054915 | 機械学習実行プログラム、オブジェクト認識プログラム、機械学習実行装置及びオブジェクト認識装置 | 2024-12-16 |
2 | 特開2023-125536 | 判定装置、異常検知システム、判定方法及びプログラム | 2024-12-16 |
3 | 特開2024-027919 | ニューラルネットワーク学習装置およびニューラルネットワーク学習方法 | 2024-12-16 |
4 | 特開2023-162753 | 画像生成方法、学習方法、画像生成装置及びプログラム | 2024-12-16 |
5 | 特開2023-076115 | 判定装置、判定システム、判定方法及びプログラム | 2024-12-16 |
6 | 特開2023-078755 | 判定装置、判定システム、判定方法及びプログラム | 2024-12-16 |
7 | 特開2023-154880 | ニューラルネットワーク生成方法およびニューラルネットワーク生成プログラム | 2024-12-16 |
8 | 特開2024-033920 | 学習装置、プログラム及びノイズ低減装置の学習方法 | 2024-12-16 |
9 | 特開2024-065787 | 画像処理装置、学習方法及び推論方法 | 2024-12-16 |
10 | 特表2023-508843 | 正規化されたTM値を使用するアッセイにおいて分析物を同定するためのシステムおよび方法 | 2024-12-13 |
11 | 特許6988034 | 妊産婦うつ症状の推定システムおよび推定方法、推定モデル生成装置 | 2024-12-12 |
12 | 特開2024-037736 | 推測装置、推測システム、推測プログラム及び推測方法 | 2024-12-11 |
13 | 特開2023-110924 | 情報処理装置、情報処理プログラム、および情報処理方法 | 2024-12-10 |
14 | 特開2020-092424 | 同一場所及び遠隔の両方の周囲に適合する個人用カメラを実装するシステム、方法、及びプログラム | 2024-12-03 |
15 | 特開2024-052561 | 溶接構造物用厚鋼板及びその製造方法、溶接部欠陥発生予測モデルの生成方法、並びに溶接構造物 | 2024-11-27 |
16 | 特開2022-012974 | 廃棄物処理システム及び廃棄物処理方法 | 2024-11-22 |
17 | 特表2022-528961 | 胚を選択する方法及びシステム | 2024-10-23 |
18 | 特許7236543 | HLAクラスII特異的エピトープの予測およびCD4+ T細胞の特徴付けのための方法およびシステム | 2024-10-07 |
19 | 特開2023-128432 | 診断装置、および診断装置の制御方法 | 2024-09-27 |
20 | 特開2022-074092 | 医用画像のシードに基づくセグメント化のシードの再ラベル付けのための方法、コンピュータ・プログラムおよび装置(医用画像のシードに基づくセグメント化のシードの再ラベル付け) | 2024-09-25 |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 467 patents/patent applications were inspection more than once in the examination process of other patent applications. The mean of the number of inspection is 1.2. The most inspection patent is 特許7371535 "自動運転制御装置、自動運転制御システム、自動運転制御方法、および廃棄物処理施設" (7 times) , and the next most inspection patent is 特許7281768 "情報処理装置、情報処理プログラム、および情報処理方法" (6 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許7371535 | 自動運転制御装置、自動運転制御システム、自動運転制御方法、および廃棄物処理施設 | 7 times |
2 | 特許7281768 | 情報処理装置、情報処理プログラム、および情報処理方法 | 6 times |
3 | 特許7281031 | 加齢に伴う持続的注意力低下の改善用の組成物 | 5 times |
4 | 特表2019-528113 | 機械学習モデルを使用した眼底画像の処理 | 5 times |
5 | 特開2018-018354 | ディープラーニングを用いた飲食品の品質予測方法及び飲食品 | 4 times |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 11,942 patents/patent applications were cited more than once in the examination process of other patent applications. The mean of the number of cited is 3.2. The most cited patent is 特許6423402 "セキュリティ処理方法及びサーバ" (90 times) , and the next most cited patent is 特開2018-055259 "情報処理装置、情報処理方法及びプログラム" (76 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許6423402 | セキュリティ処理方法及びサーバ | 90 times |
2 | 特開2018-055259 | 情報処理装置、情報処理方法及びプログラム | 76 times |
3 | 特許6573739 | 室内用有酸素運動装置、運動システム | 75 times |
4 | 特許6522488 | ワークの取り出し動作を学習する機械学習装置、ロボットシステムおよび機械学習方法 | 74 times |
5 | 特開2021-027917 | 情報処理装置、情報処理システム、および機械学習装置 | 71 times |
"Patent Integration Report" is a web service provided by "Patent Integration Co., Ltd." operated by patent attorneys who are experts in intellectual property rights. Based on the latest patent data, this is one of the largest patent report services in Japan that provides information on technology trends in various companies and technology fields.
The purpose of this web service is to make intellectual property information familiar to many people, regardless of whether they have an interest in intellectual property rights, and to make use of it.
We actively provide various types of patent information that can be used in various media articles such as newspapers, magazines, and web media. Please feel free to contact us from "Inquiry form for details on the content of patent information that can be provided, conditions for provision, etc. Please contact us.
All rights related to the data, documents and charts belong to "an integrated patent search/analysis service provider, Patent Integration". Please specify the source “Patent Integration Report, URL: https://patent-i.com/report/en/" when inserting them into in-house materials, external report materials, etc., regardless of whether they are paid or free of charge.
Patent data is obtained by aggregating and analyzing the latest patent data issued by the Patent Offices of respective countries and jurisdictions and by WIPO. Although we take great care in publishing and analyzing the results, we do not guarantee the correctness of the data. We appreciate your understanding.
If you have any concerns about this service, please feel free to contact us.
All rights to the data, documents, figures and tables are reserved by e-Patent. When publishing internal documents, external reports, etc. (whether paid or free of charge), please use the following URL: https://e-patent.co.jp/.
e-Patent will not be liable for any damages or losses arising from the use of the global patent application status, ranking information, or population search formula in the "SDGs Global Company Ranking from a Patent Perspective". Items with ● in front of the target are not supported at this time (judged to be difficult to approach from the patent information analysis).
There is no problem to cite patent application status and ranking information, but please clearly indicate "Source: e-Patent Co.
Credit notation
・MeCab user dictionary for science technology term © National Bioscience Database Center licensed under CC Attribution-Share Alike 4.0 International