The Technical Field "遺伝子" had 176 patent application filings in the most recent period (2023-01-01 to 2023-04-30). This is a significantly decreased of -733 filings (-80.6%) over 909 they had in the same period of the previous year (2022-01-01 to 2022-04-30).
The highest number of filings in 2019 with 3,621 cases, and their lowest number in 2023 with 335 cases.
The mean of the number of filings over the last 5 years (2019 to 2024, 12,313 cases in total) is 2,052, and the median is 2,671. The coefficient of variation (standard deviation/mean) is 0.7, and there have been relatively large fluctuations in the number of filings from year to year.
Index | Value |
---|---|
Average | 2,052 patents |
Std Dev | 1,353 |
COV | 0.7 |
Year | Cases | YOY |
---|---|---|
2023 year | 335 cases | -87.1 % |
2022 year | 2,589 cases | -5.96 % |
2021 year | 2,753 cases | -6.93 % |
This report provides the latest patent analysis information (the IP landscape, including a patent map) on the patent search results of the JP patent database for 遺伝子 for the period of the last 10 years (2015-01-01 to 2024-12-31). You can compare the information in this report with the trends in your competitors’ patent filings and technologies, and use it to search for important patents.
This service provides, free of charge, a patent analysis report based on the latest patent data (Japanese, U.S., European, and PCT application publications) for use in patent searches, patent analysis, and IP landscaping. The service is offered by "Patent Integration" a firm specializing in patent search/patent analysis.
This report includes basic information to help you understand the IP strategy and management of 遺伝子, such as changes in the number of patents/patent applications they have filed, comparisons of the numbers of patents/patent applications filed by their peers and competitors, their top coapplicants (joint research partners, alliance partners), and their most important patents. It can be used in various intellectual property business operations such as IP landscaping, patent search/patent analysis, preparation of intellectual property business evaluation reports, selection of M&A candidates, and selection of alliance partners.
He is a patent attorney at a patent office. He specializes in invention counseling, patent filing, and intellectual property strategies for start-up companies and new businesses in the fields of software, information technology and artificial intelligence. He runs a patent course for beginners on Udemy, an online course provider.
After studying physics at the University of Tokyo as a doctoral student, he was engaged in intellectual property analysis and technology trend research as an in-house patent attorney at a precision equipment manufacturer and at Toyota Central R&D Labs. Inc..
The concept of the "IP landscape" (IPL) has been attracting attention recently.
An IP landscape is not limited to patent information, but also integrates and analyzes business information (e.g., non-patent information such as papers, news releases, stock information, and market information). Intellectual-property-based business management is realized through the analysis of intellectual property information applied to the formulation of management strategies and business strategies. This is a comprehensive approach that includes but not limited to planning of open and closed strategies, selecting M&A candidates, searching for alliance partners, and formulating intellectual property strategies, through the exploitation of intellectual property information.
IP landscaping usually includes patent search and patent analysis. In patent search and patent analysis, it is important to grasp the market position of each company and the overall technological trends and development trends for each technology. More specifically, it is important to understand what intellectual property your own company and other companies hold, what the strengths and weaknesses of other companies are, and how other companies are trying to exploit their intellectual property. In other words, it is important to understand both the business strategy and the intellectual property strategy of each company.
After reading this search report, you may be interested in more detailed patent searches and patent analysis. We offer a service called Patent Integration, which is an integrated patent search and patent analysis service. With reasonable pricing and a simple user interface such that even beginners can quickly search for and analyze patent information by company or technology from a web browser, please consider using it for detailed patent searches, patent analysis, and IP landscaping.
Patent Integration has a patent-landscaping function that can visually represent a set of tens of thousands of patents/patent applications. This allows you to convincingly show the technical positions of your company and its competitors to your management and business strategists in order to formulate management strategies and business strategies.
The changes in the number of patent filings of 遺伝子 over the last 20 years (JP) are shown below.
The change in the number of patents/patent applications is the most basic index in patent analysis. By examining the change in the number of patents/patent applications, you can see the status of technological development and R&D focus for each company or technology. It should be noted that since there is a one and a half year lag between the filing and the laying open of patent applications, it is not possible to analyze the situation more recently than one and half years prior to the present.
In this report, you can only see the change in the number of patents/patent applications by company or technology, whereas Patent Integration allows you to quickly compare the number of patent applications with your competitors in each technical field by cross-referencing with other keywords and patent classifications.
This patent analysis report was created for a patent search set of 25,412 cases retrieved by applying the following search formula and analysis period to the following patent database. Patent information such as a patent analysis result, a patent map, and a patent landscape can be freely used for patent searches, analysis, and work on intellectual property strategies, including IP landscaping.
A patent aanlysis report on the following synonyms was found in the technical term "遺伝子".
The number of patents and changes in the number of patents of other companies (competitors) in the same industry as 遺伝子 are shown below.
Comparison of changes in the number of patents with peers and competitors is an important analytical index for understanding the intellectual property strategies of each company. By checking the transition of the number of patents for each company / competitor, you can check the status of focus on technology development and R&D for each company / technology.
It should be noted that patents have a time lag of one and a half years from filing to publication, so it is not possible to analyze the situation more recent than one and a half years.
If you want to find out more information, " Patent Integration , You can compare the number of patent applications with competitors in each technical field in a short time by multiplying with other keywords and patent classifications.Please use it for more detailed patent information analysis such as selection of M&A candidate destinations and alliance destinations.
Comparing the number of applications of each company, 国立研究開発法人農業・食品産業技術総合研究機構 has the highest number of joint applications in the last in the last 3 years (2023 to 2025) with 16 cases, followed by 花王株式会社 with 12 cases.
Name | Cases |
---|---|
国立研究開発法人農業・食品産業技術総合研究機構 | 16 cases |
花王株式会社 | 12 cases |
住友化学株式会社 | 6 cases |
国立研究開発法人産業技術総合研究所 | 5 cases |
味の素株式会社 | 4 cases |
国立研究開発法人理化学研究所 | 1 cases |
ザリージェンツオブザユニバーシティオブカリフォルニア | 1 cases |
Comparing the number of applications of each company, リジェネロン・ファーマシューティカルズ・インコーポレイテッド has the highest number of joint applications in the last for the target period (2015 to 2025) with 373 cases, followed by ザリージェンツオブザユニバーシティオブカリフォルニア with 269 cases.
Name | Cases |
---|---|
リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 373 cases |
ザリージェンツオブザユニバーシティオブカリフォルニア | 269 cases |
ジェネンテックインコーポレイテッド | 216 cases |
国立研究開発法人農業・食品産業技術総合研究機構 | 170 cases |
ノバルティスアーゲー | 169 cases |
花王株式会社 | 146 cases |
国立研究開発法人産業技術総合研究所 | 126 cases |
味の素株式会社 | 102 cases |
国立研究開発法人理化学研究所 | 90 cases |
住友化学株式会社 | 49 cases |
国立研究開発法人科学技術振興機構 | 32 cases |
Below is a patent map showing changes in the number of applications for JP patents of 11 companies in the same industry over the past 20 years.
The number of patents and changes in the number of patents of other companies (competitors) in the same industry as 遺伝子 are shown below.
Comparison of changes in the number of patents with peers and competitors is an important analytical index for understanding the intellectual property strategies of each company. By checking the transition of the number of patents for each company / competitor, you can check the status of focus on technology development and R&D for each company / technology.
It should be noted that patents have a time lag of one and a half years from filing to publication, so it is not possible to analyze the situation more recent than one and a half years.
If you want to find out more information, " Patent Integration , You can compare the number of patent applications with competitors in each technical field in a short time by multiplying with other keywords and patent classifications.Please use it for more detailed patent information analysis such as selection of M&A candidate destinations and alliance destinations.
Among the top coapplicants, 国立研究開発法人産業技術総合研究所 has the highest number of joint applications in the last in the last 3 years (2023 to 2025) with 5 cases, followed by 味の素株式会社 with 4 cases.
Name | Cases |
---|---|
国立研究開発法人産業技術総合研究所 | 5 cases |
味の素株式会社 | 4 cases |
国立研究開発法人理化学研究所 | 1 cases |
ザリージェンツオブザユニバーシティオブカリフォルニア | 1 cases |
Among the top coapplicants, リジェネロン・ファーマシューティカルズ・インコーポレイテッド has the highest number of joint applications in the last for the target period (2015 to 2025) with 373 cases, followed by ザリージェンツオブザユニバーシティオブカリフォルニア with 269 cases.
Name | Cases |
---|---|
リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 373 cases |
ザリージェンツオブザユニバーシティオブカリフォルニア | 269 cases |
ジェネンテックインコーポレイテッド | 216 cases |
国立研究開発法人産業技術総合研究所 | 126 cases |
味の素株式会社 | 102 cases |
国立研究開発法人理化学研究所 | 90 cases |
国立研究開発法人科学技術振興機構 | 32 cases |
Below is a ranking of the number of JP patent applications by 遺伝子’s top 7 coapplicants over the last 20 years.
Below is a patent map showing the changes in the numbers of JP patent filings by 遺伝子’s top 7 coapplicants over the last 20 years.
遺伝子 filed 32 joint applications with 国立研究開発法人科学技術振興機構 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 8 cases in total) is 1.3, and the median is 1.0. The coefficient of variation (standard deviation/mean) is 1.0, and there have been very big fluctuations in the number of filings from year to year.
The highest number of filings in 2015 with 9 cases, and their lowest number in 2023 with 0 cases.
Index | Value |
---|---|
Average | 1.3 patents |
Std Dev | 1.4 |
COV | 1.0 |
Year | Cases | YOY |
---|---|---|
2022 year | 2 cases | - |
2021 year | 0 cases | -100 % |
2020 year | 3 cases | 0 |
遺伝子 filed 126 joint applications with 国立研究開発法人産業技術総合研究所 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 50 cases in total) is 8.3, and the median is 8.5. The coefficient of variation (standard deviation/mean) is 0.6, and there have been big fluctuations in the number of filings from year to year.
The highest number of filings in 2015 with 27 cases, and their lowest number in 2023 with 5 cases.
Index | Value |
---|---|
Average | 8.3 patents |
Std Dev | 5.0 |
COV | 0.6 |
Year | Cases | YOY |
---|---|---|
2023 year | 5 cases | -37.5 % |
2022 year | 8 cases | -11.11 % |
2021 year | 9 cases | -30.8 % |
遺伝子 filed 102 joint applications with 味の素株式会社 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 33 cases in total) is 5.5, and the median is 3.0. The coefficient of variation (standard deviation/mean) is 0.9, and there have been relatively large fluctuations in the number of filings from year to year.
The highest number of filings in 2017 with 20 cases, and their lowest number in 2022 with 2 cases.
Index | Value |
---|---|
Average | 5.5 patents |
Std Dev | 5.1 |
COV | 0.9 |
Year | Cases | YOY |
---|---|---|
2023 year | 4 cases | +100 % |
2022 year | 2 cases | 0 |
2021 year | 2 cases | -83.3 % |
遺伝子 filed 90 joint applications with 国立研究開発法人理化学研究所 for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 40 cases in total) is 6.7, and the median is 7.0. The coefficient of variation (standard deviation/mean) is 0.8, and there have been relatively large fluctuations in the number of filings from year to year.
The highest number of filings in 2017 with 19 cases, and their lowest number in 2023 with 1 cases.
Index | Value |
---|---|
Average | 6.7 patents |
Std Dev | 5.3 |
COV | 0.8 |
Year | Cases | YOY |
---|---|---|
2023 year | 1 cases | -75.0 % |
2022 year | 4 cases | -60.0 % |
2021 year | 10 cases | -28.57 % |
遺伝子 filed 269 joint applications with ザリージェンツオブザユニバーシティオブカリフォルニア for the analysis period (2015 to 2025).
The mean of the number of filings over the last 5 years (2019 to 2024, 112 cases in total) is 18.7, and the median is 23.0. The coefficient of variation (standard deviation/mean) is 0.7, and there have been relatively large fluctuations in the number of filings from year to year.
The number of filings has been decreasing for the last 3 years (2021 to 2024). The highest number of filings in 2018 with 59 cases, and their lowest number in 2023 with 1 cases.
Index | Value |
---|---|
Average | 18.7 patents |
Std Dev | 13.9 |
COV | 0.7 |
Year | Cases | YOY |
---|---|---|
2023 year | 1 cases | -96.3 % |
2022 year | 27 cases | +35.0 % |
2021 year | 20 cases | -23.08 % |
The following shows JP patents held by 遺伝子 that have had an invalidation trial against them demanded or an opposition filed against them by a third party, and 遺伝子’s JP patents/patent applications of high importance cited by Examiners in patent examination processes.
By noting the most important patents, you can obtain knowledge of the competitive business environment in which 遺伝子 is placed (e.g., whether it is a fiercely competitive environment or an oligopolistic market and the like). In general, it can be understood that a company with a large number of demands for invalidation trials is developing their business in a business environment where IP disputes are common.
If you want to search for more detailed information, you can use Patent Integration to retrieve and download by company cited patents/patent applications or patents undergoing invalidation trials. You can quickly extract important patents from a patent set that includes multiple competitors by cross-referencing with other keywords and patent classifications. Please consider using it for searches for important patents/patent applications.
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 4 patents Invalidation Trial from third parties. The average number of Invalidation Trial is 1.2 times. The most recently Invalidation Trial patent is 特許6300215 "植物の特性を増強する方法" (Invalidation Trial day 2023-02-03) , next is 特許6896700 "ワクチン組成物" (Invalidation Trial day 2023-01-27) .
- | No. | Title | Invalidation Trial days |
---|---|---|---|
1 | 特許6300215 | 植物の特性を増強する方法 | 2023-02-03 |
2 | 特許6896700 | ワクチン組成物 | 2023-01-27 |
3 | 特許6203879 | 配列操作のための系、方法および最適化ガイド組成物のエンジニアリング | 2022-09-30 |
4 | 特許6692856 | RNA依存性標的DNA修飾およびRNA依存性転写調節のための方法および組成物 | 2022-02-25 |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 4 patents/patent applications were invalidation trial more than once in the examination process of other patent applications. The mean of the number of invalidation trial is 1.2. The most invalidation trial patent is 特許6300215 "植物の特性を増強する方法" (2 times) , and the next most invalidation trial patent is 特許6283440 "逆流性食道炎の再発抑制剤" (1 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許6300215 | 植物の特性を増強する方法 | 2 times |
2 | 特許6283440 | 逆流性食道炎の再発抑制剤 | 1 times |
3 | 特許6896700 | ワクチン組成物 | 1 times |
4 | 特許6203879 | 配列操作のための系、方法および最適化ガイド組成物のエンジニアリング | 1 times |
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 27 patents Opposition from third parties. The average number of Opposition is 1.0 times. The most recently Opposition patent is 特許7391092 "メタン富化ガス組成物の製造のためにCO2含有産業ガスを使用する方法" (Opposition day 2024-06-03) , next is 特許7448953 "眼疾患のための細胞モデル及び治療関連出願への相互参照" (Opposition day 2024-04-17) .
- | No. | Title | Opposition days |
---|---|---|---|
1 | 特許7391092 | メタン富化ガス組成物の製造のためにCO2含有産業ガスを使用する方法 | 2024-06-03 |
2 | 特許7448953 | 眼疾患のための細胞モデル及び治療関連出願への相互参照 | 2024-04-17 |
3 | 特許7344565 | 未分化細胞検出法 | 2024-03-13 |
4 | 特許7328390 | フィブロイン様タンパク質の製造法 | 2024-02-15 |
5 | 特許7317275 | 植物成長促進組成物 | 2024-01-31 |
6 | 特許7316745 | 三次元組織体 | 2024-01-24 |
7 | 特許7305630 | N-アセチルノイラミン酸の発酵生産 | 2024-01-09 |
8 | 特許7300242 | 汚染水処理方法 | 2023-12-27 |
9 | 特許7308329 | GABAを有効成分とするサルコペニア予防または改善剤 | 2023-10-26 |
10 | 特許7244922 | 化学修飾された一本鎖RNA編集オリゴヌクレオチド | 2023-09-20 |
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 59 patents Protest from third parties. The average number of Protest is 1.3 times. The most recently Protest patent is 特開2021-132601 "油脂酵母の油脂生産制御因子" (Protest day 2024-12-23) , next is 特開2023-032890 "細胞質雄性不稔性遺伝子、雄性不稔回復植物、ナス科植物の細胞質雄性不稔の稔性を回復する方法、雄性不稔回復植物の製造方法、雄性不稔性植物、及び雄性不稔性植物の製造方法" (Protest day 2024-11-29) .
- | No. | Title | Protest days |
---|---|---|---|
1 | 特開2021-132601 | 油脂酵母の油脂生産制御因子 | 2024-12-23 |
2 | 特開2023-032890 | 細胞質雄性不稔性遺伝子、雄性不稔回復植物、ナス科植物の細胞質雄性不稔の稔性を回復する方法、雄性不稔回復植物の製造方法、雄性不稔性植物、及び雄性不稔性植物の製造方法 | 2024-11-29 |
3 | 特開2023-153942 | フィブロイン様タンパク質の製造法 | 2024-11-01 |
4 | 特開2023-148722 | 冷凍麺類の製造方法 | 2024-10-28 |
5 | 特表2023-510911 | 卵巣癌を検出するための組成物及び方法 | 2024-10-11 |
6 | 特表2023-542536 | オリゴ糖組成物及び使用方法 | 2024-10-09 |
7 | 特表2023-517644 | コロナウイルスワクチン組成物及び方法 | 2024-06-15 |
8 | 特開2023-022363 | 細胞保護用剤 | 2024-04-18 |
9 | 特表2022-552052 | 抗VEGFタンパク質組成物及びその製造方法 | 2024-03-12 |
10 | 特開2023-175938 | 糖代謝改善用組成物 | 2024-03-04 |
11 | 特表2023-544184 | 接着細胞からのウイルスのバイオリアクター生成 | 2024-02-01 |
12 | 特開2021-090398 | オルニチン高生産酵母、及び酒類又は食品の製造方法 | 2024-01-26 |
13 | 特表2022-548197 | 抗VEGFタンパク質組成物及びその製造方法 | 2024-01-15 |
14 | 特開2023-161047 | 育毛促進用組成物 | 2023-12-20 |
15 | 特開2022-073838 | 皮膚における抗光老化剤及びこれを用いた皮膚老化防止・改善剤 | 2023-10-16 |
16 | 特許7473331 | 評価方法及び製造方法 | 2023-10-06 |
17 | 特表2022-538132 | 健康評価のためのシステム及び方法 | 2023-10-03 |
18 | 特表2021-503278 | CasZ組成物及び使用方法 | 2023-07-06 |
19 | 特開2023-036582 | がんのための治療方法及び診断方法 | 2023-06-26 |
20 | 特表2021-505171 | 噴霧乾燥シアリルラクトース | 2023-06-14 |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 127 patents/patent applications were protest more than once in the examination process of other patent applications. The mean of the number of protest is 1.3. The most protest patent is 特許7101362 "1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母の作出方法" (6 times) , and the next most protest patent is 特許6119881 "カプロン酸エチルの産生能が高い酵母、及び当該酵母を利用した発酵物の製造方法" (3 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許7101362 | 1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母の作出方法 | 6 times |
2 | 特許6119881 | カプロン酸エチルの産生能が高い酵母、及び当該酵母を利用した発酵物の製造方法 | 3 times |
3 | 特開2017-121251 | カプロン酸エチルの産生能が高い酵母、及び当該酵母を利用した発酵物の製造方法 | 3 times |
4 | 特許7576815 | 青汁用の飲食用組成物 | 3 times |
5 | 特許6426567 | クリーンな味を産み出す酵素調製物 | 3 times |
In the last 3 years (2022-01-01 ~ 2024-12-31), there were 445 patents Inspection from third parties. The average number of Inspection is 1.3 times. The most recently Inspection patent is 特表2021-503278 "CasZ組成物及び使用方法" (Inspection day 2024-12-24) , next is 特表2022-512593 "抗原提示細胞の機能を増強するための生体分子の細胞内送達" (Inspection day 2024-12-19) .
- | No. | Title | Inspection days |
---|---|---|---|
1 | 特表2021-503278 | CasZ組成物及び使用方法 | 2024-12-24 |
2 | 特表2022-512593 | 抗原提示細胞の機能を増強するための生体分子の細胞内送達 | 2024-12-19 |
3 | 特開2023-082077 | 1,3-ブタンジオールの産生のための生物 | 2024-12-19 |
4 | 特表2024-502755 | がんを処置する方法 | 2024-12-18 |
5 | 特表2024-500877 | がんを処置する方法 | 2024-12-18 |
6 | 特表2024-500874 | がんを処置する方法 | 2024-12-18 |
7 | 特表2024-504002 | がんを処置する方法 | 2024-12-18 |
8 | 特開2022-141855 | 核酸の標準化された配列決定のための方法およびその使用 | 2024-12-17 |
9 | 特開2023-062063 | 抗KIT抗体及びその使用 | 2024-12-10 |
10 | 特表2022-532564 | 先駆制御性細胞栄養芽細胞およびその使用 | 2024-12-10 |
11 | 特表2021-532776 | 造血細胞の遺伝子改変のための方法 | 2024-11-29 |
12 | 特開2023-153942 | フィブロイン様タンパク質の製造法 | 2024-11-27 |
13 | 特表2022-547154 | 調節可能な制御のためのCA2-IL15融合タンパク質 | 2024-11-25 |
14 | 特表2022-516318 | カプセル化ポリヌクレオチド及び使用方法 | 2024-11-22 |
15 | 特表2022-517456 | 臓器健康および疾患をモニタリングするための方法およびシステム | 2024-11-21 |
16 | 特表2022-514116 | 新規な癌抗原及び方法 | 2024-11-21 |
17 | 特許7606950 | カゼインを含む組成物およびこれを作製する方法 | 2024-11-15 |
18 | 特表2023-504773 | 眼遺伝子送達のためのAAVベクター変異体 | 2024-11-07 |
19 | 特開2023-148722 | 冷凍麺類の製造方法 | 2024-11-06 |
20 | 特開2023-123469 | B型肝炎ウイルス感染のためのRNAi薬 | 2024-11-06 |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 851 patents/patent applications were inspection more than once in the examination process of other patent applications. The mean of the number of inspection is 1.3. The most inspection patent is 特許6320473 "アロNKT細胞を用いた免疫療法およびそのためのT細胞抗原受容体(TCR)遺伝子のα鎖領域が均一なVα−Jαに再構成されている細胞および該細胞由来NKT細胞のバンキング" (48 times) , and the next most inspection patent is 特開2015-107131 "ADAM6マウス" (12 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許6320473 | アロNKT細胞を用いた免疫療法およびそのためのT細胞抗原受容体(TCR)遺伝子のα鎖領域が均一なVα−Jαに再構成されている細胞および該細胞由来NKT細胞のバンキング | 48 times |
2 | 特開2015-107131 | ADAM6マウス | 12 times |
3 | 特許6283440 | 逆流性食道炎の再発抑制剤 | 12 times |
4 | 特開2018-070660 | 逆流性食道炎の再発抑制剤 | 9 times |
5 | 特開2016-135143 | ADAM6マウス | 8 times |
Of the patent applications filed in the last 10 years (2015-01-01 to 2024-12-31), 3,315 patents/patent applications were cited more than once in the examination process of other patent applications. The mean of the number of cited is 2.2. The most cited patent is 特許6395765 "配列操作のための改善された系、方法および酵素組成物のエンジニアリングおよび最適化" (36 times) , and the next most cited patent is 特許6778114 "イミド系タンパク質分解モジュレーター及び関連する使用方法" (36 times) .
- | No. | Title | |
---|---|---|---|
1 | 特許6395765 | 配列操作のための改善された系、方法および酵素組成物のエンジニアリングおよび最適化 | 36 times |
2 | 特許6778114 | イミド系タンパク質分解モジュレーター及び関連する使用方法 | 36 times |
3 | 特許6429337 | ミドリイシ属サンゴのための種間及び種内マイクロサテライトマーカー | 33 times |
4 | 特開2016-106631 | 非ヒト哺乳動物 | 28 times |
5 | 特開2016-063824 | マイクロ流体システム内のインビトロ進化 | 28 times |
"Patent Integration Report" is a web service provided by "Patent Integration Co., Ltd." operated by patent attorneys who are experts in intellectual property rights. Based on the latest patent data, this is one of the largest patent report services in Japan that provides information on technology trends in various companies and technology fields.
The purpose of this web service is to make intellectual property information familiar to many people, regardless of whether they have an interest in intellectual property rights, and to make use of it.
We actively provide various types of patent information that can be used in various media articles such as newspapers, magazines, and web media. Please feel free to contact us from "Inquiry form for details on the content of patent information that can be provided, conditions for provision, etc. Please contact us.
All rights related to the data, documents and charts belong to "an integrated patent search/analysis service provider, Patent Integration". Please specify the source “Patent Integration Report, URL: https://patent-i.com/report/en/" when inserting them into in-house materials, external report materials, etc., regardless of whether they are paid or free of charge.
Patent data is obtained by aggregating and analyzing the latest patent data issued by the Patent Offices of respective countries and jurisdictions and by WIPO. Although we take great care in publishing and analyzing the results, we do not guarantee the correctness of the data. We appreciate your understanding.
If you have any concerns about this service, please feel free to contact us.
All rights to the data, documents, figures and tables are reserved by e-Patent. When publishing internal documents, external reports, etc. (whether paid or free of charge), please use the following URL: https://e-patent.co.jp/.
e-Patent will not be liable for any damages or losses arising from the use of the global patent application status, ranking information, or population search formula in the "SDGs Global Company Ranking from a Patent Perspective". Items with ● in front of the target are not supported at this time (judged to be difficult to approach from the patent information analysis).
There is no problem to cite patent application status and ranking information, but please clearly indicate "Source: e-Patent Co.
Credit notation
・MeCab user dictionary for science technology term © National Bioscience Database Center licensed under CC Attribution-Share Alike 4.0 International